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responds,m pm'_ctuar,mmsomc aetodynmmtcrespon_-_,suchasthosecomputedusingCFD code_,win be modeled.
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OUTLINE

• Motivation and Approach

• Volterra Theory of Nonlinear Systems

• CAP-TSD Code

• Application to a CFD Model

(NACA 0012 rectangular wing)

• Concluding Remarks

Oudm¢

Thepresentationbegins withabriefdescriptionof themodvationandapproachthathas beentakenfor this research.This will be
followed by a descriptiono/tic VoitcrmTheoryof NonlinearSystems and the CAP-TSDcock whichis anacroclasdc,IransonicCFD
(ComputatiotaalFluidDynamics) code. The applicationof the Volterratheoryto aCFD model and, more specifically,to a CAP-TSD
model of arectangularwing witha NACA0012 airfoil section will bepresented. F'mally,some concludingremarkswill bemade.
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MOTIVATION FOR RESEARCH

I

Modern Control Theory (time domain) i
I

FutureCurrent / t _t_ Future

Approach/ t _App roaches

Time-domain
Approximate

Aerod_,namics

I RFAs
Linear
Frequency-
Domain Aero

Nonlinear
Aerodynamics

j • Transonic
CFD behavior

• High alpha

Motivation For Re.arch

The cun_nt aplwmch for performing a_zosefvoelastic analysis and design, in the p_liminary design stage, begins with d_e generation
_ .f_quency-_.ain .a_dy?amics. suc.h= tho_ obtainedusing doub!et la_i_..,d_cxry. Usin_l_ ccmce_t of n_'c_al lunch"

aaom, a dme-_main mooel ot me linear aerodynamics is generatm whicn is men amename mr use w_m mooem conum
theory. In the futu_, however, it is highly desirable to be able to design control laws that can account for nonlineari6es in the flow such
as the nmdinearities created by mmsonic flows and high alpha motions. Many of these complex behavim3 an_ cummtly modeled using
CFD codes but the_ is, curn_ntly, no practical methcgl for using the information generated by CFD codes in modern control theory.
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BASIC APPROACH

• To model unsteady nonlinear aerodynamic responses
as a Volterra nonlinear system

commands

from

control

system

Linear
Structure

Nonlinear ' t_Aero

sensor

data

to

control

system

BI_ Appmech

ap_ that add_sscs the problem mentioned in the pm cha_ is to model the unsteady nonlinear ae_dynamic system as a
VoimTa nonlinear system. This system can then be coupled with a smJc_re, usually a linear su,,_-unc but dds is not • hard n_
for the methodology. This aemelasfic system cam then be treated u the plant for which conu'ol laws can be designed and/m"evaluated.
But what exactly is a Vol_-m nonlinear system ?
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VOLTERRA THEORY OF NONLINEAR SYSTEMS
Volterra Series

t

y(t) = j'h l(t-'_) u('c) d1:
0

+

tt

O0
h2s(t-_;1,t-1;2) u(1;1) u(t;2) dl;1 dl;2

t t

_..j'hns(t-1;1,...,t-1;n) U(_'l)...U(_'n)dl;l...d_" n + ...
0 0

• Assumes system is causal and time invariant

• Symmetric higher-order kernels: h2s(tl,t2)=h2s(t2,tl)

• Higher-order kernels are measure of nonlinearity

• Theory also referred to as the Volterra-Wiener Theory

Volmma Th¢o¢7 of Nonlinear Systems, Volmrra Series .

The basic promise of the Volte=T=finery of nonlinear systems is dmt the _ of a no_ _, _0, d_ m _ _
input, u(t), can b¢ predicted by an in£mi= series of mulddimensio, tal convolution integrals. Tlds is known u the Voln=nm series.
convolution integral has a kernel associated with that panicuhu"ocder. That is, the first intcgrM, also n=fcnt_ to u the fint-ord_ in_IprM,
has the standard one-dimensional kernel of unit impulse mslx_se. The second integral, of the second-order convolution, has the second-
order kernel which is a two-dimensional trait impulse scsponse, and so on. This particular formulation assumes that the system is causal
and dmc invarianc Thc highcr-mder kernels, of order two and above, m_ symmetric. Thcsc kernels are also a measure e( nonlinearity.
This can be clearly seen whcn the higher-osdcr kcrncls as_ zero and the mspon_ of the system is lincar. Thcmforc, when the high=r-
older kernels an_ non-zorn valued, they represent a dcviatioa from linear response or a nc_linem"n_sponse. Due to the conlributions of
Norbcrt Wiener, the theory is also rcfcrrcd to as di¢ Volterm-Whmer theory of nonlinear systems.
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VOLTERRA THEORY OF NONLINEAR SYSTEMS
Volterra Series

For a "weakly" nonlinear system,

y(t) = j'hl(t-'c) u('c) d'_ +
0

tt

00
h2s(t-'_l,t-_ 2) u('_1) u(_2) d_1 d'c2

• Many physical systems accurately modeled as weakly
nonlinear

• The basic problem is one of kernel identification

Weakly Nonlinear Sys_ms

The assumption of a weakly nonlinear $.y_. m can be made in order to simplify the present analysis. ,_s sec_l._Unply statesthat kernels of ord_ throe and above are negligible and the response of the system can be modeled using y
nonlinearities. There exist many physical systems ti_athave been accura_ly modeled as weakly nonlinear in the fielch of bi?lol_ ,, ._
chemistry, and robotics. The basK: problem, then, is one of kernel identification. If the first- and second-ruder kernels can oe loenm_ea,
then the response of the nc_linear system to arbitrary inputs can be computed.
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VOLTERRA THEORY OF NONLINEAR SYSTEMS
Kernel Definition and Identification

, T 1
Y2 ; ' -_ t

I I

I I

Yle ,7"N,_-.__ t
I I

I I

t 1 t2

h2s = (1/2) (Y12-Y2-Y1)

h2s = f(t,T)

• For a linear system, second- (and higher-) order
kernels are identically zero

• Nature of nonlinear kernels depends on the nature
of the system being investigated

I_znelDefinition and ldendfcadm

One method for identifying kernels is the method o(unit impulse responses. Shown in this clam is the definition of the sccond-order
kernel, for • weakly nonlinear system, using unit impulse responses. The yl response is the response of the nonlinear system to a unit
impulse input at dine t 1; y2 is the n_spmse c(the nonlinear system to a unit _p_ _ _ _ _ and y12 is the response of the
nonline_ system to a trait impulse input at time tl and a unit impulse input at ume t2. Since the sys_m is time invariant, y2 is yl shifted
in time. 'I'ne second-cn_ kernel is lhen computed as one-half the difference of these responses. As the lime lag, T, between the two
unit impulse inputs is varied, addidomd terms of the second-onkr kernel an_ ge_ As can be seen, d_ _ kernel is a
two-dimensional funclion c/rI/me, t, and time lag, T. It is clear from this definition that for a pundy linear system, the second-ocd_
kentel is identically z=o by theprinciple otrs_vosifion. When this secon-onler kernel is non-zero, this impfics a deviation fxom
lineazity, or a nonlinear respmse. The ram_, or character, of the nonlinear kernels depends on the system being investigated and no
asmnl_OnS c_mbe made a priori to the actual compuuuim of the ke_L
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VOLTERRA THEORY OF NONLINEAR SYSTEMS
State-Space Realization

• Linear
=Ax + Bu

y = Cx

and h(t) = C [ exp(At) ] B

• Nonlinear (Bilinear State Equation)

= Ax + Nxu + Bu
y = Cx

and h(tl,t 2) = C[exp(At2)(N)exp(Atl)]B

• If kernels are known, then A, B, C, and N matrices

can be computed.

SuBc-Spac¢Realizadoe

A mdy powerful chatacteds_ o_ the VoI1_'ta theory of nonJiuear sy_ems L_shown in this chart- It Lswell known lha¢ fo¢ a liuear
system descxibed as shown _ thaz the unit impulse responseof that sy_-m is der-med as shown. If ¢I_ um_timpulse response of the

systemis known, then usingRali:mion technique, one _ compu= the.A, B, _ Cmalri_... The =_loipu. s"dtuad'o_._ forc_abe
Vol=rra nonliuear systemwhen=the =econd-oNet kcruel _ defined as shown, lrzxc,ore, u me sccono-oroet¢err_l m • Rmcm
identified, the A, B, C, and N roan'iceso/' a bilincar state-sPaceequadoncan berealized- This is rhea a novJinesr,=taac-spscedescription

438



CAP-TSD CODE

• Computational Aeroelasticity Program - Transonic
Small Disturbance

• Uses time-accurate, approximate factorization
finite-difference algorithm

• Applicable to realistic configurations

C,M_-TSD Code

The CFD code used for tl_ re_eamh is the CAP-TSD code.C_. -TSD is an acronym that =ands for Computational Aeruelastici.ty
e,_osr=.-T,'=r,_.=.Sm__. "n,,=.cod=_ol_=,_ .o.U,,e=-._. -_q=.cy ==.,o.,: m.u d=t=rb=,=_qu=,o,,="S '
time-accurate, appzoxlmate factorizatu_t algorithm developed by Dr. Jack Balina and a team from the Unsteady Aerodynamics re'anon.
The code is applicable to realistic configurations.
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APPLICATION TO A CFD MODEL

• Theory -- Continuous systems -- unit impulse function

CFD codes -- Discrete systems -- unit pulse function

(example in paper and Ref. 23)

unit pulse function u(t) = 1.0 for t = tO

0.0 for t _ tO

• Unsteady Aerodynamic System

input-- downwash function

output -- lift or moment response

Applicationtoa_ Model

The Voltcrra d_eoty discussed thus far addresses continuous sysu_rns for which the unit hnpulse function is defm¢_ CFD codes,
however, are discrete systems. Thevcfo_, the unit pulse 'funcdon, which is die discrete equivalent oCthe unk impulse input for condnces

times. The tms_.ady rood .ym_m_.c syslem is ae .ru?caas having me aownwasn. _ u me input mm _, momcm, of amy _, ,_,._
as its output. Definition ofd_ input and output oepenas on me syslem m t_ mvesugaxca.
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APPLICATION TO CAP-TSD

Downwash function in CAP-TSD for any modeshape

dz ± d_(x,y)
f(x,y,t) + = _ + A1(t)

+ A2(t)(L-_of) _(x,Y)

T
tO t

Apply unit pulse to A l(t) and A2(t )

• Exponential pulse capability (NOT unit pulse)

p(t) = 80 exp(-w (t-tc) 2)

l_(t)=- 2w(t- tc) p °t

For arbitrary pitching motion, tc

Al(t ) = p(t) and A2(t) = I_(t)

ARdicadoa to CAP-TSD

Morn s_y, the g_plicadoa _.the Volle_ra theory Io the CAP-TSD code il _own_in li_. c.h_- TI_...d_mwuh fu_'_ _ s _
defined as shown wbcrc the plus and minus signs SelZ_scnt the _ and Iowcr stmac? of _ _ .The ._x.., m .meme sm_s m
the upper amJ low_" stzrfilces of the airfo/l. The AI .tern re.p_sen_ ttte rate of change ol motion _cc zt ts mm.upt_o oY me momu _

¢=¢hof the= I=rms of the downwLth. The CAP-TSD code hasa ¢=pa._._ty_fetmd to =m¢ cxpoctcntuu_ ¢.,q_.l_ty ....
not beconfusedwith the unit pulseinput. The exponendal pulse capabili_ _ define_l,u._own, andfor trbiu-m'y motion, me At tm,m =
n_ with the1_0 f-unct_ anddt _ term h _.placed w_th the rate-,_-cnange ot l_Z)tuncuoL
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RESULTS FOR NACA0012 RECTANGULAR WING
Computational Model

• NACA0012 rectangular wing with pitch and plunge
degrees of freedom

• semi-span model (panel AR=2.0)

• Grid dimensions: 140 x 40 x 92

Compu_ona] Modal

The CAP-TSD model consis_ of • recumsular wing with a NACA 0012 airfoil and with pitch and plunge deifies ot :r:xeedom. It is a
semi-span model wilh a psnel aspecl nuioof2.0. 'rhe Brid is d/mensioned 140 by 40 by 92 Brid poims in dle x-, y-, and z_s
_-_y.
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RESULTS FOR NACA0012 RECTANGULAR WING
Analysis

• Lift-coefficient response due to pitch about the
mid-chord

• All responses at M = 0.8

• Nonlinear responses about a converged steady-state
solution

Analysis

"rh¢resultsthat will be [0¢_scntzxlcon_st of lift coefficient du¢ =oa pitching motion aboutthe mid-ch_ ot_,.thewi_n_.All _$u],ts am
for a Math number of 0.8, for which a shock exists so that dil_mnccs between the linear (flat plate) am nonunear _ssj u3/uuons
sl_ould be no//ceable. All nonlinear CAP-TSD solutions _ computed about a co=werged steady-state solution.
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C L

1.0

LINEAR (FLAT PLATE) UNIT PULSE RESPONSE IN LIFT

DUE TO FIRST COMPONENT OF PITCHING MOTION

0.5

0.0

-0.5
0 1 2

chord lengths of travel

Line_ (flat plate) Unit Pulse Response in Lift Due to First Component of Pimhing Motion

This is the unit pulse response in lift due m the first component of the pitching motion, or the downwash. The response is stable, or
gltUa¢ integrable,u would beexpected.
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C L

0.1

LINEAR (FLAT PLATE) UNIT PULSE RESPONSE IN LIFT
DUE TO SECOND COMPONENT OF PITCHING MOTION

0.0

-0.0

-0.1
1

chord lengths of travel

2

Limsr (tl= ida=) U_it Pub= _ in Lift Do= =o Sc¢oBl ComponentofRchm s Mcdoa

sq_ m=_¢. mcmer to _ mat mese _sponses _e _ umt lmlSc l_pomes, sn arbitrary plmhing mo6on wu
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LOW FREQUENCY PITCHING MOTION

3.0

deg,

deg/s
2.0

1.0

0.0

-1.0

-2.0

-3.0
0

\

\
pitch rate (deg/s) \

\/
,, ,, , ..... \.-/, ,

1 2 3 4 5

chord lengths of travel

/"-,\ _-_

/ / \
i/\ \ .

Thisbd_pichin|modmd_waaiF_cnued. kconsistsofapoddvepichupw3delFeesandthen beckdownwO_ 1"he
coczRx_J_s ra_-o(-chang¢ot modmisalsol_sen_l. Thismodonwasdc'nprocesseddwoughdleCAP-TSDcode_oobtainthe
c_. :XSD_. _ so_. _ _s mo._.,_ .co_oi,__ _ r_ mt _ __,_ _ _.-_. _ of
l_¢r<uqmo_0mwascmvc/wd withd_ secom_ pu_eresponsepn_-med.'r_se twocmvo_ werethenadded_ _ d_
toadlinearcmvolufim

446



LIFT DUE TO LOW FREQUENCY PITCHING MOTION

C L

5.0

4.0

3.0

2.0-

1.0 -

'l

0

-----EEF--- CAP-TSD flat plate (6000s,40million,1 day)
linear convolution (10s,200k,15s)

1 2 3 4 5

chord lengths of travel

LL_DuetoLowFRqmacyPichingModon

Thi=b • compm_ of the.CAP-TSDt_..1_., ml.udontnd thelinearconvolutionsoludonforthelowf_uezcy pitching
As ¢=mbe see.n,thecom._ Is excell.entyieldingidentical_ to plottingw.cumcy. It is importantto note the savin@in feet
thatw= obtainedby..u_._t_.convoludonproc_ufe.TheC:_.-TSDsolutioncost6000cpusecond=,n_quim140minionwo_ of
memory, and was availablethe next day. The convoludon soluuon cost I0 cpuseconds, n_quired200 tlmusmdwords of memogy,and
was availablein 15seconds, r_r _ l_lml_lthis hi,of course, of minimaliml_'tln_ w linearprobkms m readilyso/red by mo_
eWgient meam dam a complex CFD code. The implication, however, is that similar cmt savings nmy be achieved for nonlinear

solutio_ It dmuld also be mentioned that the cost of computing the unit pulse teR_ses should _ _ m _ _ _t _ _

convolution solution, bm that omit was only 2400 cpu seconds. The wad benefit to be obtained horn the Vohemt, or convolution

apprmch,however, is thatonce the unit pulsercsptmses(orkernels)axeavailable,the samekernelscan be usedto predictthe n_Imng
to od_ tnp_
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HIGH FREQUENCY PITCHING MOTION

6.0

deg,

deg/s

0.0

pitch (deg)

pitch rate (deg/s)

0 1 2 3 4 5

chord lengths of travel

High FrequencyPitching Moron

For example, ff'd_ein_,t is now thigh fn:q=ncy:=put _h u shown m d_ dmt, convolution of thisinput with the cor_spon_g
umt pain mspon_ yie=os....
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LIFT DUE TO HIGH FREQUENCY PITCHING MOTION

CL

5.0

4.0

3.0

2.0

1.0

0.(_

[] CAP-TSD flat plate (6000s,40million,lday)
- ---_---linearconvolution (10s,200k,15s)

-1.0 I I I I I
0 1 2 3 4 5

chord lengths of travel

... this_lt ^pi_ _ c_n.l_¢_onI_¢_ theCAP-TSDfl_ pla_ _ludon andthelinearconvolution= excella_ Al_ough
costof theCAP-TSD_i_ m_ alpunthesameu thatofthep_viouslow-f_q_mcy_. thecosto[ theccevolufionb u
•own on_ cl_tc TIz _ _ _ l_l c_mpuu_ioow_ l_id ini_dlyandis n_ i_id q_i_
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FIRST-ORDER UNIT PULSE RESPONSE IN LIFT

DUE TO FIRST COMPONENT OF PITCHING MOTION

CL

1°0 -

0.5

0.0

--0.5
0 1 2

chord lengths of travel

F'L,_-On_ Unit Pulse RcslXmSc Due to F'wst Compo_nt of Pitching Motion

Investigation of the nonlinear t_sponscs begins with the computation of the fint_ kcrncl. It is important to tcalizc that tim _'st-

ker_. 1 is the linear port_." of the nonlinear response which is not, _n genera. ¢_i.tfivaJent to the purely _ tespom¢. Shown in
this chart.is the first-order u.mt pulse response due to the fn_t cont. ponent of the pttchmg m(mon. Although this response has tt similar
charactenstac to the pmeay linear unit pulse response shown previously, when plotted together noticeable differences are noticeable.
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FIRST-ORDER UNIT PULSE RESPONSE IN LIFT

DUE TO SECOND COMPONENT OF PITCHING MOTION

C L

0.1

0.1

0.0

-0.0

-0.1 - I I
0 1 2

chord lengths of travel

First-Otd¢,UnitPulseResponseDue toSecondComponentofPitd_ngMotion

Thisisthexeast-o_le_runitpulsezesponseduem thesecondcomponentof thepitchingmotion. Again,a similarcharacte_=ic=othe
•linear,orflat plate, n_sponscbut it is diffe_nl.
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LIFT DUE TO FORCED HARMONIC PITCHING MOTIONS

c L

2.50 -

2.00-

150 -

1.00-

0.50 -

0.00

-0.50 -

-1.00
0.00

Real

[]

[] CAP-TSD flat plate

(_) L_':First-order convolution
(_ CAP-TSD w/thickness

g

i
Imaginary

1 I l
0.50 0.75 1.00

reduced frequency

|

LiftReslx_sesDue to Forc_lHarmonicPitchingModons

The flnt-oeder kernel was evaluated using forced harmonic pitching motions at Ouee reduced frequencies of motion and compared
with CAP-'rs_ fiat plat= and CAP-TSD with thicimcss results. The data indicates that the fast-order kernel predicts the CAP-TSD
nonlinear(withthickness)resultatme highfrequency.Thiscomparisonisdegradedasreducedfrequencyislowered_h-is tobe
expected since the transonic nonlinearities become morn dominant as frequency is reduced. This indicates a need for the second-order
kernel _sponses. Of interest is once again the cost savings. The three first-order responses were generated in about half an hour
whereas the CAP-TSD msuhs lasted several days and cost significandy more in CI_ and memory.
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SECOND-ORDER (NONLINEAR) UNIT PULSE RESPONSE IN LIFT

DUE TO FIRST COMPONENT OF PITCHING MOTION

0.0030

CL

0.0020

0.0010

-0.0000

-0.0010

-0.0020

-0.0030 I I
0.0 0.5 1.0

chord lengths of travel

Shown here is the first term of the second-order kengl, or unit pulse response, due tothe first component of the pitching modott.
Note the noticeably _t changteristic of this _sponse as comping! to the two p_viously _ _. A toud of four terms of
the _o,d-or_ kernel we_ compmed for the _esem analytit
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LIFT DUE TO LOW FREQUENCY PITCHING MOTION

CL

CAP-TSD flat plate

_ CAP-TSD w! thickness1st order convolution
lst+2nd order convolution

-0.5 I I I
0 1 2 3 4 5

chord lengths of travel

Lift Dee to Low Frequency Piching Mo_n

Shown here is a comparison of the msponse_ obtained for the low fn:quency pitching motkm: the CAP-TSD flat plate solution, the
CAP-TSD with thickness solution, the first-order convolution, and the summation of the first- and second-order convoludons. It is
obvious that the purely linear response, the CAP-TSD flat plate response, is quite diffe_nt from the CAP-TSD with ddckneu response.
The first-order solution, however, although it overshoots the CAP-TSD nonlinear soludon (with thickness), is an iml[n_vew.,_nt cnmrthe
linear rcsponsc. This is most noubk in the latt_ part _th¢ responses. The addidon of the _ terms provides the neccssm'y
differenceto the first-ordm"soludmtto accuratelypredictthepeak of the CAP-TSD nonlinearsohdon, with very slightdisc_rpanciesnear
the latter part of the responses.
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ADVANTAGES OF METHODOLOGY

• CFD code used initially to define kernels

• Once kernels are defined, CFD code NOT USED
AGAIN

• Linear and nonlinear responses computed using
simple convolution subroutine (negligible cost)

Kernels can be used to generate linear and nonlinear
state-space matrices that define the unsteady
response of the aerodynamic system

Advanu_es ofMed_d_osy

The advantages of the rncd_dolo_ m'e as follows. First, the C]FDcode is used initially to define the necessary kernels. Once the
kernels are de£med, the CFD code need nee be used again. This is whe_ the potential for significant cost savinp becomes obvious.

_co_o,=_ k==,.,,_,_r,,_t_=,_.o._n_._'Fo'"==_ _pu,__g.,..p___.__
compumtioe.ai_ _a_y, fzom _e kernels,linear IJ_ nmur_ar m-_ matrices canDe _ mac_
responseof _e aet_ly_r_ syslem.
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CONTINUED DEVELOPMENT (PLANS)

• Second-order kernel d_ffinition, application, limitations

DAVINCI (Definition of Aerodynamic Volterra
Integrals for Nonlinear Control Interactions) Team
formed with Aeroservoelasticity Branch
(Mukhophadyay, Wieseman)

• System realization, bilinear equations

• Apply methodology to Euler/Navier-Stokes code(s)

Condn.M De_lopment OPlans)

Curn_m efforts are aimed at Kld/domLl second-order kernel clefinidon and validation, applications, and limitations. The DAVINCI
(Definition of A_tx/ynamic Volm_ Integrals for Nonlinear Conm>l In_racfions) Team has been formed with Dr. Vivek Mukhophadyay
and _ W_rn_ _ die same b¢_-,ch. Addidonal work is being pcTformed in undemanding d_ sys_m ff_alizafion issues for bilincar
systL'msand bil/net equadow. It is also planned to apply kernel idcndficafion techniques to h/gher-level fluid dynamics equationssuch
as the Eul_ and Navier-S_ _u_ions.
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CONCLUDING REMARKS

Linear and nonlinear discrete aerodynamic unit pulse
response functions (kernels) defined for arbitrary
frequencies

• Linear (flat-plate) results • excellent

Nonlinear results

- First-order term provides "linearized" result

- Second-order term provides nonlinear effect

- Additional validation/development underway

• Cost savings (CPU, memory and turnaround time)

Coecl_lblg Rem=rk=

uen¢l_. |nemcttlmtlllele_ex_t=otslgmnctmceas=trel_sentsRn_diffe_entto__ l._e_,or

tim phme,resuh= _ excel]_ in compad_t with .._ _-TSD flat pL_ g_ msul_ "I'helinear n=suhs vslld_ the use ¢_ unit

• . l_e=the_'=_=r=h=Md_esecoM-ordcrm_c_u_sthe_lurc=rcf_ _is, ofcour_Klditio_

_..AUl wlul Imown, me O01t mvutp L_ _mclur_t tot tire clues shown, which _ _ _ _s _ _
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